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Abstract
The understanding of the theoretical structure of phonon dispersion in Yukawa
lattices and the relationship between these perfect lattice phonons on the one
hand, and the excitations in the disordered and liquid states on the other,
is an important issue in analysing experimental and simulation results on
plasma crystals. As the first step in this programme, we have numerically
calculated the full phonon spectrum for 2D triangular Yukawa lattices, for a
wide range of κ̄ (screening parameter) values and along different propagation
angles. Earlier calculations of the excitation spectra of the 2D and 3D Yukawa
liquids were based on the quasilocalized charge approximation (QLCA), whose
implicit premise is that the spectrum of an average distribution (governed by the
isotropic liquid pair correlation function) is a good representation of the actual
spectrum. To see the implications of this model more clearly, we compare the
high � (near crystallization) QLCA phonon spectra with the angle-averaged
phonon spectra of the lattice phonons.

PACS numbers: 63.20.−e, 63.20.Dj, 52.65.Yy

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A 2D Yukawa system is a good representation of structures forming in dusty plasma and
colloidal experiments [1, 2]. The potential is φ(r) = (q2/r) e−κr and its Fourier transform
φ(k) = 2πq2(k2 + κ2)−

1
2 (q is the particle charge, κ is the inverse screening length). In the

strong coupling regime, the system is either in the liquid or in the crystalline solid (hexagonal
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Figure 1. (a) Representative dispersion curves and (b) polarization angles θ , for κ̄ = 3.81
(corresponding to κ̃ = 2). The periodicity for ϕ = 13.8979◦ is k̄ = 23.7891, in agreement with

(3). The plasma frequency is ω2
p = 2πnq2

maws
.

lattice) phase. The phase boundary has recently been calculated [3]. We address the problem
of collective modes in the lattice versus collective modes in the liquid state. In the lattice,
we calculate the dispersion relations, the polarizations, the frequency spectra and the angle-
averaged dispersion, which are compared with the dispersion relations in the liquid state for the
longitudinal and transverse modes, as calculated in the QLCA approximation and confirmed
by MD simulations [4]. In the case of lattice calculations, the distance, wave number and the
screening parameter are normalized by the lattice constant a: r̄ = r/a, k̄ = ka, κ̄ = κa, while
in the liquid phase calculations the Wigner–Seitz radius aws is used: r̃ = r/aws, k̃ = kaws and
κ̃ = κaws.

2. Lattice phonons

The phonon dispersion relation for a lattice is [5, 6]

‖ω2(k, ϕ) − Dµν(k)‖ = 0 (1)

where

Dµν(k) = − q2

ma3

∑
i

Mµν(r̄i )(e
ik̄·r̄i − 1) Mµν(r) = e−κ̄ r̄

r̄5
{3r̄µr̄νA(κ̄r̄) − δµν r̄

2B(κ̄r̄)}.

(2)

A(x) = x2/3 + x + 1, B(x) = x + 1 and the summation is over the lattice points of a triangular
lattice. While it is sufficient to consider k values within the 1st Brillouin zone to obtain full
information on the frequency spectrum, it is instructive to follow the dispersion for high values
of k and study the angle dependence of the periodicity of the ω(k) curves. Simple periodicity
of ω(k) in k prevails only in the principal directions of the lattice (figure 1). In a general
direction ϕ (see figure 2), the period in k̄ is given by

k̄ = (4π/
√

3)(m/2 + n)/ cos
(π

6
− ϕ

)
= (4π/

√
3)

√
m2 + mn + n2 (3)

such that m and n exist as the minimum integers satisfying the relation tan
(

π
6 − ϕ

) = m
√

3
m+2n

.
Moreover, ‘longitudinal’ and ‘transverse’ polarizations occur only in the principal directions,
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Figure 2. Bands of the two phonon modes for ϕ = 1–30◦, for κ̃ = 2, shown together with the
longitudinal and transverse QLCA dispersion curves for � = 360 (thick lines). Also shown is the
reciprocal hexagonal lattice, its principal directions, the 1st Brillouin zone and its irreducible part.
The wavevectors in the second picture are in units of 4π/(

√
3a).

while, in general, the polarizations are mixed and the polarization angle θ (the angle with
respect to k) is a sensitive function of k and ϕ (figure 1(b)). A complete family of dispersion
curves is shown in figure 2.

We have calculated the frequency spectrum g(ω) by numerical integration over the angles:
g(ω) is the quantity that can be most directly compared with molecular dynamics (MD)
simulations. The angularly resolved frequency spectra are

g(ω, ϕ) = k
dω
dk

(k, ϕ)|k=k(ω,ϕ)

(4)

with k taken within the irreducible part of the first Brillouin zone, while the full frequency
spectrum is obtained by angular integration

g(ω) =
∫

g(ω, ϕ) dϕ. (5)

The calculated frequency spectra have been confirmed by MD simulations of a solid, finite
temperature system of 990 particles. The histogram of frequencies was determined from
the Fourier analysis of an exceedingly long time series of the coordinates of a single test
particle (figure 3). We have also verified that the frequency spectra satisfy the important sum
rule established by Bakshi [7]∫

ω2g(ω) dω = ω2
Einstein (6)

where ωEinstein is the characteristic Einstein frequency of the system, defined as the oscillation
frequency of a single particle in the frozen environment of all the others [4, 8].

3. Collective modes in the liquid

The collective modes in the liquid state can be calculated in the QLCA approximation whose
validity has been verified by MD simulations. The dispersion relation is [4]∥∥∥∥ω2(k, ϕ) − 
2

0(k)
kµkν

k2
− Dµν(k)

∥∥∥∥ = 0 (7)
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Figure 3. Calculated frequency spectrum (solid line) and MD simulation (histogram) for κ̃ = 2.
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Figure 4. QLCA (solid line) for � = 360 and angularly averaged lattice curves (dashed) for κ̃ = 2.

where

Dµν(k) = −ω2
p

∫
Mµν(r̃)(eik̃·r̃ − 1)h(r̃) dr̃ 
2

0(k) = ω2
p

k̃2

√
k̃2 + κ̃2

(8)

n = 1
/(

πa2
ws

)
is the particle number density, h(r) is the pair correlation function and

ω2
p = 2q2

ma3
ws

. A comparison between the lattice dispersions calculated here and the QLCA
dispersions calculated in [4] for � = 360 is shown in figure 2. The lattice and phonon
spectra are markedly different: the dispersion in the liquid is isotropic and splits into
well-defined longitudinal and transverse polarizations; in contrast, the angularly averaged
lattice dispersions and the QLCA dispersions show a remarkable similarity (figure 4). The
former have been calculated from (1), (2) by decomposing the polarization vectors into their
longitudinal and transverse components and by integrating Mµν over all angles to produce
angularly averaged kernels. This process results into the following results:

ω2
L(k) = k̃3

2

∑
ri

e−y

x3

[
1 + y +y2 − (4 + 4y + 2y2)J0(x) + (6 + 6y + 2y2)

J1(x)

x

]

ω2
T (k) = k̃3

2

∑
ri

e−y

x3

[
1 + y +y2 + (2 + 2y)J0(x) − (6 + 6y + 2y2)

J1(x)

x

] (9)

where x = kr and y = κr , while ωL and ωT are in units of ωp.
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Thus, we have shown that the phonon spectrum of the crystal lattice is substantially
different from that of the strongly coupled isotropic liquid. This is well demonstrated by
figure 2. The difference is primarily due to the anisotropy of the lattice. On the other hand,
the dispersion resulting from angular averaging over the lattice positions closely emulates the
dispersion of the liquid state. The similarity can be understood by realizing that the local
structure of the strongly coupled liquid is similar to that of the crystal lattice, but with an
orientation that changes randomly from point to point.
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